Ribet-Herbrand Theorem

Anlun Li

USTC

May 25, 2022

Anlun Li (USTC)

Ribet-Herbrand Theorem

May 25, 2022 1/38

- A Short Review
- Two Stronger Versions of The Theorem
- Introduction to the Modular Forms
- Ribet's Idea of the proof

Let $A = Cl(\mathbb{Q}(\mu_p))$ finite ideal class group, $C = A/A^p$ is a \mathbb{F}_p vector space.

$$\Delta = Gal(\mathbb{Q}(\mu_p)/\mathbb{Q}) \xrightarrow{\sim} (\mathbb{Z}/p\mathbb{Z})^*$$

 $G_{\mathbb{Q}} = Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ the absolute Galois group.

 $\chi: G_{\mathbb{Q}} \to Gal(\mathbb{Q}(\mu_p)/\mathbb{Q}) \xrightarrow{\sim} (\mathbb{Z}/p\mathbb{Z})^*$, sometimes it will also denote a Dirichlet character.

 $H = \{z \in \mathbb{C} : Im(Z) > 0\}$, the upper half plane.

Lemma (Decomposition Lemma)

If R is a commutative ring containing $\{\langle \mu_n \rangle\}$ and $\frac{1}{n}$, G is an abelian group with order n, then for R[G] -module M, we have

$$M = \bigoplus_{\chi} M(\chi),$$

where $M(\chi) = \{m \in M : \sigma m = \chi(\sigma)m \text{ for every } \sigma \in G\}, \chi \text{ is a Dirichlet character modulo } n.$

View C as $\mathbb{F}_p[Gal(K/\mathbb{Q})]$ module, we have:

$$C = \bigoplus_{i=1}^{p-1} C(\chi^i),$$

Lemma (Decomposition Lemma)

If R is a commutative ring containing $\{\langle \mu_n \rangle\}$ and $\frac{1}{n}$, G is an abelian group with order n, then for R[G] -module M, we have

$$M = \bigoplus_{\chi} M(\chi),$$

where $M(\chi) = \{m \in M : \sigma m = \chi(\sigma)m \text{ for every } \sigma \in G\}, \chi \text{ is a Dirichlet character modulo } n.$

View C as $\mathbb{F}_p[Gal(K/\mathbb{Q})]$ module, we have:

$$C = \bigoplus_{i=1}^{p-1} C(\chi^i),$$

as a \mathbb{F}_p vector space.

Anlun Li (USTC)

Let $\frac{t}{e^t-1} = \sum_{n=0}^{\infty} B_k \frac{t^n}{n!}$. B_n is called Bernoulli numbers. A fact states that $\zeta(1-n) = -\frac{B_n}{n}$ for $n \ge 1$.

In the 1930s, Herbrand found:

Proposition (Herbrand, 1930s)

Let $k \in [2, p-3]$ be an even integer. If $C(\chi^{1-k}) \neq 0$, then $p|B_k$.

This is a consequence of the Stickelberger's Theorem. Today, we mainly focus on the converse.

Theorem (Ribet, 1970s)

Let $k \in [2, p-3]$ be an even integer. If $p|B_k$, then $C(\chi^{1-k}) \neq 0$.

Let $\frac{t}{e^t-1} = \sum_{n=0}^{\infty} B_k \frac{t^n}{n!}$. B_n is called Bernoulli numbers. A fact states that $\zeta(1-n) = -\frac{B_n}{n}$ for $n \ge 1$.

In the 1930s, Herbrand found:

Proposition (Herbrand, 1930s)

Let $k \in [2, p-3]$ be an even integer. If $C(\chi^{1-k}) \neq 0$, then $p|B_k$.

This is a consequence of the Stickelberger's Theorem. Today, we mainly focus on the converse.

Theorem (Ribet, 1970s)

Let $k \in [2, p-3]$ be an even integer. If $p|B_k$, then $C(\chi^{1-k}) \neq 0$.

We first introduce two stronger versions of the theorem.

Theorem

Let $k \in [2, p-3]$ be an even integer, and suppose that $p|B_k$. Then there exists a galoisian extension E/\mathbb{Q} containing $K = \mathbb{Q}(\mu_p)$ such that

- The extension E/K is everywhere unramified.
- The group H = Gal(E/K) is a non-trivial p-elementary commutative group, i.e. H ≃ (Z/pZ)ⁿ.
- For every $\sigma \in G=Gal(E/\mathbb{Q}), \ \bar{\sigma} \in \Delta = Gal(K/\mathbb{Q}), \ and \ every \ \tau \in H$,

$$\sigma\tau\sigma^{-1} = \chi(\bar{\sigma})^{1-k}.\tau$$

This theorem indeed implies Ribet's Theorem.

Version 3

Let $D \subset G_{\mathbb{Q}}$ denote one of the decomposition group at the prime p, i.e. $D = \{ \sigma \in G_{\mathbb{Q}} : \wp^{\sigma} = \wp, p \subset \wp \subset \overline{\mathbb{Z}} \}. \ \chi : G_{\mathbb{Q}} \to Gal(\mathbb{Q}(\mu_p)/\mathbb{Q}) \xrightarrow{\sim} \mathbb{F}_p^*.$ The following theorem is stronger than the previous one.

Theorem

Let $k \in [2, p-3]$ be an even integer, and suppose that $p|B_k$. There exists a finite extension \mathbb{F}/\mathbb{F}_p , and a continuous representation $\rho: G_{\mathbb{Q}} \to GL_2(\mathbb{F})$, such that

• ρ is unramified at every prime $l \neq p$.

•
$$\rho \sim \begin{pmatrix} 1 & \gamma \\ & \chi^{k-1} \end{pmatrix}, \gamma : G_{\mathbb{Q}} \to \mathbb{F} \text{ is non-trivial.}$$

• $\rho|_D$ is semi-simple.

Note that in such case, a representation is semi-simple if and only if its image cannot be divided by p.

Anlun Li (USTC)

Definition (Congruence Group)

 $\Gamma \text{ is called a congruence group if there exists N, s.t. } \Gamma(N) \subset \Gamma, \text{ where } \\ \Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (mod \ N) \right\}.$

We will also need the following definitions.

$$\begin{split} \Gamma(N) &= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (mod \ N) \right\} \\ \Delta \\ \Gamma_1(N) &= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} (mod \ N) \right\} \\ \Delta \\ \Gamma_0(N) &= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} (mod \ N) \right\} \end{split}$$

Modular Forms

Definition (Modular Curves)

$$\begin{split} Y(\Gamma) &:= \Gamma \setminus H = \{ \Gamma \tau : \tau \in H \}, \text{ is the set of orbits.} \\ X(\Gamma) &:= \Gamma \setminus H^*, \text{ where } H^* = H \cup P^1(\mathbb{Q}). \end{split}$$

Fact: $X(\Gamma)$ is a compact Riemann Surface.

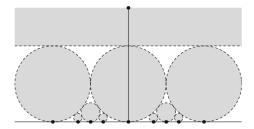


Figure 1: Neighborhoods of ∞ and of some rational points

Anlun Li (USTC)

Ribet-Herbrand Theorem

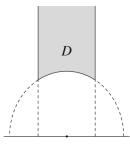


Figure 2: the fundamental domain for $SL_2(\mathbb{Z})$

Definition (Modular Forms of weight k with respect to Γ)

- $f:H\to\mathbb{C}$ is called modular forms of weight k with respect to Γ (i.e. $f\in M_k(\Gamma))$ if:
 - f is holomorphic in H
 - $f[\gamma]_k = f$ for any $\gamma \in \Gamma$
 - $f[\alpha]_k$ is holomorphic at ∞ for any $\alpha \in SL_2(\mathbb{Z})$

Moreover, if $a_0 = 0$ in $f[\alpha]_k$'s fourier expansion for all $\alpha \in SL_2(\mathbb{Z})$, then f is called a **cusp form** of weight k respect to Γ , i.e. $f \in S_k(\Gamma)$.

If we replace "holomorphic" by "meromorphic", then the set is $A_k(\Gamma)$, called **Automorphic form**.

Definition (Modular Forms of weight k with respect to Γ)

 $f:H\to\mathbb{C}$ is called modular forms of weight k with respect to Γ (i.e. $f\in M_k(\Gamma))$ if:

- f is holomorphic in H
- $f[\gamma]_k = f$ for any $\gamma \in \Gamma$
- $f[\alpha]_k$ is holomorphic at ∞ for any $\alpha \in SL_2(\mathbb{Z})$

Moreover, if $a_0 = 0$ in $f[\alpha]_k$'s fourier expansion for all $\alpha \in SL_2(\mathbb{Z})$, then f is called a **cusp form** of weight k respect to Γ , i.e. $f \in S_k(\Gamma)$.

If we replace "holomorphic" by "meromorphic", then the set is $A_k(\Gamma)$, called **Automorphic form**.

Definition (Modular Forms of weight k with respect to Γ)

 $f:H\to\mathbb{C}$ is called modular forms of weight k with respect to Γ (i.e. $f\in M_k(\Gamma))$ if:

- f is holomorphic in H
- $f[\gamma]_k = f$ for any $\gamma \in \Gamma$
- $f[\alpha]_k$ is holomorphic at ∞ for any $\alpha \in SL_2(\mathbb{Z})$

Moreover, if $a_0 = 0$ in $f[\alpha]_k$'s fourier expansion for all $\alpha \in SL_2(\mathbb{Z})$, then f is called a **cusp form** of weight k respect to Γ , i.e. $f \in S_k(\Gamma)$.

If we replace "holomorphic" by "meromorphic", then the set is $A_k(\Gamma)$, called **Automorphic form**.

Proposition (Decomposition of $M_k(\Gamma_1(N))$)

$$M_k(\Gamma_1(N)) = \bigoplus_{\chi} M_k(N,\chi),$$

where $M_k(N, \chi) = \{f : f[\gamma]_k = \chi(d_{\gamma})f \text{ for all } \gamma \in \Gamma_0(N)\}$, and χ is a Dirichlet character modulo N.

Proof.

Note that $\Gamma_0(N)/\Gamma_1(N) \cong (\mathbb{Z}/N\mathbb{Z})^*$.

 $Pic^0(X) = Div^0(X) / Div^l(X)$

Definition

 $Jac(X) = \Omega^1_{hol}(X)^{\wedge}/H_1(X,\mathbb{Z})$

Note that the right side is a complex torus of dimension g.

Theorem (Abel Theorem)

For X a compact Riemann Surface, if g > 0, then

$$Pic^{0}(X) \cong Jac(X), \ [\sum_{x} n_{x}x] \mapsto \sum_{x} n_{x} \int_{x_{0}}^{x} \int_{x$$

 $Pic^0(X) = Div^0(X)/Div^l(X)$

Definition

 $Jac(X) = \Omega^1_{hol}(X)^{\wedge}/H_1(X,\mathbb{Z})$

Note that the right side is a complex torus of dimension g.

Theorem (Abel Theorem)

For X a compact Riemann Surface, if g > 0, then

$$Pic^{0}(X) \cong Jac(X), \ [\sum_{x} n_{x}x] \mapsto \sum_{x} n_{x} \int_{x_{0}}$$

 $Pic^0(X) = Div^0(X)/Div^l(X)$

Definition

 $Jac(X) = \Omega^1_{hol}(X)^{\wedge}/H_1(X,\mathbb{Z})$

Note that the right side is a complex torus of dimension g.

Theorem (Abel Theorem)

For X a compact Riemann Surface, if g > 0, then

$$Pic^{0}(X) \cong Jac(X), \ [\sum_{x} n_{x}x] \mapsto \sum_{x} n_{x} \int_{x_{0}}^{x}$$

Let $\sigma : X \to Y$ be a nonconstant holomorphic map between compact Riemann Surfaces, then we have forward map and reverse map of Pic^0 .

$$\sigma_* : Pic^0(X) \to Pic^0(Y)$$
$$\sigma_*[\sum_x n_x x] = [\sum_x n_x \sigma(x)]$$

$$\sigma^* : Pic^0(Y) \to Pic^0(X)$$
$$\sigma^* [\sum_y n_y y] = [\sum_y n_y \sum_{x \in \sigma^{-1}y} e_x x]$$

Theorem

Let k be an even positive integer, and Γ be a congruence group of $SL_2(\mathbb{Z})$. The following map is an isomorphism of complex vector space.

$$\omega: A_k(\Gamma) \to \Omega^{\otimes k/2}(X(\Gamma))$$

In particular, ω induces an isomorphism from $S_2(\Gamma)$ to $\Omega^1_{hol}(X(\Gamma))$

Hecke Operators(1)

We can define two **Operators** from $M_k(\Gamma_1(N))$ to $M_k(\Gamma_1(N))$. Let f be a modular form respect to $\Gamma_1(N)$, i.e. $f \in M_k(\Gamma_1(N))$.

Definition $(\langle n \rangle)$

For (n, N) = 1, define

$$\langle d \rangle f = f[\alpha]_k$$
 for an $\alpha = \begin{pmatrix} a & b \\ c & \delta \end{pmatrix} \in \Gamma_0(N)$, where $\delta \equiv d \mod(N)$.

For (n, N) > 1, $\langle d \rangle f = 0$.

Fact:

- $\langle d \rangle$ is independent of the choice of α .
- $\langle d \rangle \langle e \rangle = \langle e \rangle \langle d \rangle = \langle de \rangle.$
- $M_k(N,\chi) = \{f : \langle d \rangle f = \chi(d)f \text{ for all } d \in (\mathbb{Z}/N\mathbb{Z})^*\}$

Hecke Operators(1)

We can define two **Operators** from $M_k(\Gamma_1(N))$ to $M_k(\Gamma_1(N))$. Let f be a modular form respect to $\Gamma_1(N)$, i.e. $f \in M_k(\Gamma_1(N))$.

Definition $(\langle n \rangle)$

For (n, N) = 1, define

$$\langle d \rangle f = f[\alpha]_k$$
 for an $\alpha = \begin{pmatrix} a & b \\ c & \delta \end{pmatrix} \in \Gamma_0(N)$, where $\delta \equiv d \mod(N)$.

For (n, N) > 1, $\langle d \rangle f = 0$.

Fact:

- $\langle d \rangle$ is independent of the choice of α .
- $\langle d \rangle \langle e \rangle = \langle e \rangle \langle d \rangle = \langle de \rangle.$
- $M_k(N,\chi) = \{f : \langle d \rangle f = \chi(d) f \text{ for all } d \in (\mathbb{Z}/N\mathbb{Z})^*\}$

Hecke Operators(1)

We can define two **Operators** from $M_k(\Gamma_1(N))$ to $M_k(\Gamma_1(N))$. Let f be a modular form respect to $\Gamma_1(N)$, i.e. $f \in M_k(\Gamma_1(N))$.

Definition $(\langle n \rangle)$

For (n, N) = 1, define

$$\langle d \rangle f = f[\alpha]_k$$
 for an $\alpha = \begin{pmatrix} a & b \\ c & \delta \end{pmatrix} \in \Gamma_0(N)$, where $\delta \equiv d \mod(N)$.

For (n, N) > 1, $\langle d \rangle f = 0$.

Fact:

• $\langle d \rangle$ is independent of the choice of α .

•
$$\langle d \rangle \langle e \rangle = \langle e \rangle \langle d \rangle = \langle de \rangle.$$

• $M_k(N,\chi) = \{f : \langle d \rangle f = \chi(d)f \text{ for all } d \in (\mathbb{Z}/N\mathbb{Z})^*\}$

Let
$$\Gamma_1(N) \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} \Gamma_1(N) = \bigcup_j \Gamma_1(N)\beta_j$$
, for some $\beta_j (\in M_2(Z)) \equiv \begin{pmatrix} 1 & * \\ 0 & p \end{pmatrix} (mod \ N), det \ \beta = p.$

Definition (T_p)

$$T_p f = f[\Gamma_1(N) \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} \Gamma_1(N)] := \sum_j f[\beta_j]_k$$

In general, $T_1 = Id$, and $T_{p^r} = T_p T_{p^{r-1}} - p^{k-1} \langle p \rangle T_{p^{r-2}}$, for $r \ge 2$. $T_{nm} = T_n T_m$ for (n, m) = 1. We list serveral facts we will use.

- $T_m \langle n \rangle = \langle n \rangle T_m$
- T defines a map from $J_1(N) = Jac(X(\Gamma_1(N)))$ to itself, where T is T_n or $\langle n \rangle$ for any $n \in \mathbb{Z}_{>0}$.

A non zero modular form $f \in M_k(\Gamma_1(N))$ is called an **eigenform** if it is an eigenform for the Hecke Operators T_n and $\langle n \rangle$ for all $n \in \mathbb{Z}^+$. Moreover, if $a_1(f) = 1$, then f is called a **normalized eigenform**.

Since $M_k(N,\chi) = \{f : \langle d \rangle f = \chi(d)f$ for all $d \in (\mathbb{Z}/N\mathbb{Z})^*\}$, for every eigenform f, there exists a Dirichlet character $\chi, f \in M_k(N,\chi)$.

Hecke algebra over \mathbbm{Z}

Definition

 $T_{\mathbb{Z}} = \mathbb{Z}[\{T_n, \langle n \rangle : n \in \mathbb{Z}^+\}],$ the algebra of $S_2(\Gamma_1(N))$ generated over \mathbb{Z} .

Proposition

 $T_{\mathbb{Z}}$ is a finite generated \mathbb{Z} module.

Proof.

 $T_{\mathbb{Z}}$ can be viewed as a submodule of $End(H_1(X_1(N)), \mathbb{Z})$.

Corollary

Let f be a normalized eigenform, then $K_f = \mathbb{Q}(\{a_n(f)\})$ is a number field.

d denotes the dimension of K_f over \mathbb{Q} .

Hecke algebra over \mathbbm{Z}

Definition

$$T_{\mathbb{Z}} = \mathbb{Z}[\{T_n, \langle n \rangle : n \in \mathbb{Z}^+\}],$$
 the algebra of $S_2(\Gamma_1(N))$ generated over \mathbb{Z} .

Proposition

 $T_{\mathbb{Z}}$ is a finite generated \mathbb{Z} module.

Proof.

 $T_{\mathbb{Z}}$ can be viewed as a submodule of $End(H_1(X_1(N)), \mathbb{Z})$.

Corollary

Let f be a normalized eigenform, then $K_f = \mathbb{Q}(\{a_n(f)\})$ is a number field.

d denotes the dimension of K_f over \mathbb{Q} .

Hecke algebra over \mathbbm{Z}

Definition

$$T_{\mathbb{Z}} = \mathbb{Z}[\{T_n, \langle n \rangle : n \in \mathbb{Z}^+\}], \text{ the algebra of } S_2(\Gamma_1(N)) \text{ generated over } \mathbb{Z}.$$

Proposition

 $T_{\mathbb{Z}}$ is a finite generated \mathbb{Z} module.

Proof.

 $T_{\mathbb{Z}}$ can be viewed as a submodule of $End(H_1(X_1(N)), \mathbb{Z})$.

Corollary

Let f be a normalized eigenform, then $K_f = \mathbb{Q}(\{a_n(f)\})$ is a number field.

d denotes the dimension of K_f over \mathbb{Q} .

Let $f \in S_2(\Gamma_1(N))$ be a newform at the level N and an eigenform of the Hecke algebra $T_{\mathbb{Z}}$. $J_1(N) = Jac(X_1(N))$.

$$\lambda_f: T_{\mathbb{Z}} \to \mathbb{C}, Tf = \lambda_f(T)f$$

and its kernel $I_f = ker(\lambda_f) = \{ T \in T_{\mathbb{Z}} : Tf = 0 \}.$

Definition

The Abelian Variety associated to f is defined to be

 $A_f = J_1(N)/I_f J_1(N)$

A Property of $A_f = J_1(N)/I_f J_1(N)$

Let $V_f = \text{Span}(\{f^{\sigma}|\sigma: K_f \to \mathbb{C} \text{ is an embedding}\})$, a subspace of $S_2 = S_2(\Gamma_1(N)), V_f^{\wedge}$ is its dual space $\subset S_2^{\wedge}. \Lambda_f = H_1(X_1(N), \mathbb{Z})|_{V_f}.$ It's natural to define

$$J_1(N) \to V_f^{\wedge}/\Lambda_f, \quad [\varphi] \mapsto \varphi|_{V_f} + \Lambda_f$$

Proposition

Let $f \in S_2(\Gamma_1(N))$ be an eigenform and newform with number field K_f , then

$$A_f \cong V_f^{\wedge}/\Lambda_f, \quad [\varphi] + I_f J_1(N) \mapsto \varphi|_{V_f} + \Lambda_f$$

The right side is a complex torus of dimension $[K_f : \mathbb{Q}]$.

A Property of $A_f = J_1(N)/I_f J_1(N)$

Let $V_f = \text{Span}(\{f^{\sigma} | \sigma : K_f \to \mathbb{C} \text{ is an embedding}\})$, a subspace of $S_2 = S_2(\Gamma_1(N)), V_f^{\wedge}$ is its dual space $\subset S_2^{\wedge}. \Lambda_f = H_1(X_1(N), \mathbb{Z})|_{V_f}$. It's natural to define

$$J_1(N) \to V_f^{\wedge}/\Lambda_f, \quad [\varphi] \mapsto \varphi|_{V_f} + \Lambda_f$$

Proposition

Let $f \in S_2(\Gamma_1(N))$ be an eigenform and newform with number field K_f , then

$$A_f \cong V_f^{\wedge}/\Lambda_f, \quad [\varphi] + I_f J_1(N) \mapsto \varphi|_{V_f} + \Lambda_f$$

The right side is a complex torus of dimension $[K_f : \mathbb{Q}]$.

Compact Riemann Surface is algebraic. But $X_0(N), X_1(N)$ can be taken as algebraic curves over \mathbb{Q} .

Henceforce, $X_1(N)$ denotes the modular curve as a nonsingular algebraic curve over \mathbb{Q} . Let $\widetilde{X}_1(N)$ denote its reduction at \mathbb{F}_p .

Theorem (Igusa Theorem)

Let N be a positive number, and prime $p \nmid N$, then $X_1(N)$ acquires good reduction at p.

Theorem (Eichler-Shimura Relation)

Let $p \nmid N$. The following diagram commutes.

$$\begin{array}{ccc} Pic^{0}(X_{1}(N)) & \xrightarrow{T_{p}} & Pic^{0}(X_{1}(N)) \\ & & & \downarrow \\ & & & \downarrow \\ Pic^{0}(\widetilde{X}_{1}(N)) & \xrightarrow{\sigma_{p,*} + \langle \widetilde{p} \rangle_{*} \sigma_{p}^{*}} & Pic^{0}(\widetilde{X}_{1}(N)) \end{array}$$

Here

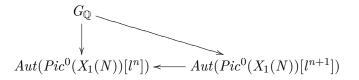
•
$$\sigma_p([x_0, x_1, \cdots, x_n]) = [x_0^p, x_1^p, \cdots, x_n^p]$$

• $\sigma_{p,*}(Q) = \sigma_p(Q)$
• $\sigma_p^*(Q) = p \ \sigma_p^{-1}(Q)$

l-adic Galois Representation

Since $X_1(N)$ is defined over \mathbb{Q} , we can define a $G_{\mathbb{Q}}$ action on $Pic^0(X_1(N))$.

For each n, there is a commutative diagram.



We state without proof that the inclusion below is an isomorphism.

 $i_n: Pic^0(X_1(N))[l^n] \hookrightarrow Pic^0(X_1(N)_{\mathbb{C}})[l^n] \cong (\mathbb{Z}/l^n\mathbb{Z})^{2g})$

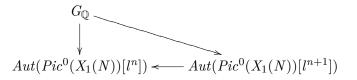
So these induce a homomorphism

 $\rho_{X_1(N),l} : G_{\mathbb{Q}} \to GL_{2g}(\mathbb{Z}_l) \subset GL_{2g}(\mathbb{Q}_l)$

l-adic Galois Representation

Since $X_1(N)$ is defined over \mathbb{Q} , we can define a $G_{\mathbb{Q}}$ action on $Pic^0(X_1(N))$.

For each n, there is a commutative diagram.



We state without proof that the inclusion below is an isomorphism.

 $i_n: Pic^0(X_1(N))[l^n] \hookrightarrow Pic^0(X_1(N)_{\mathbb{C}})[l^n] \cong (\mathbb{Z}/l^n\mathbb{Z})^{2g})$

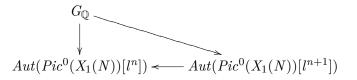
So these induce a homomorphism

 $\rho_{X_1(N),l} \colon G_{\mathbb{Q}} \to GL_{2g}(\mathbb{Z}_l) \subset GL_{2g}(\mathbb{Q}_l)$

l-adic Galois Representation

Since $X_1(N)$ is defined over \mathbb{Q} , we can define a $G_{\mathbb{Q}}$ action on $Pic^0(X_1(N))$.

For each n, there is a commutative diagram.



We state without proof that the inclusion below is an isomorphism.

$$i_n : Pic^0(X_1(N))[l^n] \hookrightarrow Pic^0(X_1(N)_{\mathbb{C}})[l^n] \cong (\mathbb{Z}/l^n\mathbb{Z})^{2g})$$

So these induce a homomorphism

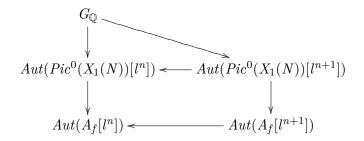
$$\rho_{X_1(N),l} \colon G_{\mathbb{Q}} \to GL_{2g}(\mathbb{Z}_l) \subset GL_{2g}(\mathbb{Q}_l)$$

Theorem

Let l be prime and let N be a positive integer. The Galois representation $\rho_{X_1(N),l}$ is **unramified** at every prime $p \nmid lN$. For any such p, let $\wp \subset \mathbb{Z}$ be any maximal ideal over p. Then $\rho_{X_1(N),l}(Frob_{\wp})$ satisfies the polynomial equation.

$$x^2 - T_p x + \langle p \rangle p = 0$$

Since ker $(Pic^0(X_1(N))[l^n] \twoheadrightarrow A_f[l^n])$ is stable unber $G_{\mathbb{Q}}$ (we omit the proof), the following diagram commutes.



And

$$Ta_l(A_f) := \lim_{\leftarrow} A_f[l^n] \cong \lim_{\leftarrow} (\mathbb{Z}/l^n\mathbb{Z})^{2d} \cong \lim_{\leftarrow} (\mathbb{Z}_l)^{2d}$$

As a corollary of the previous theorem, we have:

Theorem

Let f be a normalized, newform and eigenform in $S_2(N, \chi)$, $\rho_{A_f,l}: G_{\mathbb{Q}} \to GL_{2d}(\mathbb{Q}_l)$, is unramified at every prime $p \nmid lN$. And $\rho(Frob_{\wp})$ satisfies

$$x^2 - a_p(f)x + \chi(p)p = 0$$

Let
$$V_l(A_f) := Ta_l(A_f) \otimes \mathbb{Q} \cong \mathbb{Q}_l^{2d}$$

Lemma

 $V_l(A_f)$ is a free $K_f \otimes_{\mathbb{Q}} \mathbb{Q}_l$ -module of rank 2.

Using the canonical isomorphism $K_f \otimes \mathbb{Q}_l \cong \prod_{\lambda \mid l} K_{f,\lambda}$, we get

$$\rho_{f,\lambda}: G_{\mathbb{Q}} \to GL(V_l(A_f) \otimes_{K_f \otimes \mathbb{Q}_l} K_{f,\lambda}) \to GL_2(K_{f,\lambda})$$

Let $f \in S_2(N, \chi)$ be a normalized eigenform with number field K_f . Let l be a prime, for each maximal ideal λ of \mathcal{O}_{K_f} lying over l, there is a 2-dimensional Galois representation

$$\rho_{f,\lambda}: G_{\mathbb{Q}} \to GL_2(K_{f,\lambda}).$$

As a corollary to the previous theorem, we get the following:

Theorem

This representation is unramified at every prime $p \nmid lN$. For any such p, let $\wp \subset \overline{\mathbb{Z}}$ be any maximal ideal lying over p. Then $\rho_{f,\lambda}(Frob_{\wp})$ satisfies the polynomial equation:

$$x^2 - a_p(f)x + \chi(p)p = 0.$$

- Let L/\mathbb{Q}_p be a finite extension, \mathcal{O} the ring of intergers of L, π the unique maximal ideal of \mathcal{O} , and $\mathbb{F} = \mathcal{O}/\pi$ the residue field.
- Let $\rho: G_{\mathbb{Q}} \to GL(V)$ be a continuous representation. Then there exists a \mathcal{O} -lattice $\Lambda \subset V$, which is $G_{\mathbb{Q}}$ stable.
- And ρ induces a representation $\rho_{\Lambda} : G_{\mathbb{Q}} \to GL(\Lambda) \to GL(\Lambda/\pi\Lambda)$
- ρ_{Λ} is called the reduction of ρ attached to Λ .

Definition (Semi-Simplification)

Let V be a finite dimensional representation of G. $0 = V_0 \subset V_1 \subset \cdots \subset V_n = V$ is its Jordan-Holder series, i.e. V_i/V_{i-1} is simple. Then

$$V^{ss} := \bigoplus_{j=1}^n V_j / V_{j-1}$$

is its semi-simplification.

We will use the following result.

Proposition

The semi-simplification of the representation of $G_{\mathbb{Q}}$ on $\Lambda/\pi\Lambda$ does not depend on the choice of Λ . Denote this unique representation by $\bar{\rho}$.

We have a criteria to determine whether a representation is semi-simple or not. Let L/\mathbb{Q}_p be a finite extension.

Proposition (Ribet's Lemma)

Suppose that L-representation ρ is simple but $\bar{\rho}$ is NOT simple.. Let φ_1 and φ_2 be the characters associated to the reductions of ρ . Then G leaves stable some lattice $\Lambda \subset V$ for which the associated reductions is of the form $\begin{pmatrix} \varphi_1 & * \\ & \varphi_2 \end{pmatrix}$ but is not semi-simple.

A Nice Eigenform constructed by Ribet

Let $\mathbb{F}_p^* \to \mathbb{Z}_p^*$ be the Teichmuller lift, $\omega : \mathbb{F}_p \to \mu_{p-1}$ such that $\mathbb{F}_p^* \xrightarrow{\omega} \mu_{p-1}$ commutes. $\epsilon = \omega^{k-2}$. We state without proof that $\lim_{p \to \infty} \mathbb{Z}_p^*$

there exists a nice eigenform.

Theorem

Suppose $p|B_k$, there exists a normalized cusp eigenform $f \in S_2(p, \epsilon)$, $f = \sum_{n>0} a_n q^n$, and a prime ideal $\wp|p$ of the number field K_f , such that for every prime $l \neq p$, the number a_l is \wp -integral and

$$a_l \equiv 1 + l^{k-1} \equiv 1 + \epsilon(l)l \pmod{p}$$

Recall in the previous section we have proved that for $\lambda | l$:

$$Tr(\rho_{f,\wp}(Frob_{\lambda})) = a_l(f), det(\rho_{f,\wp}(Frob_{\lambda})) = \epsilon(l)l$$

Proposition

The representation $\rho_{f,\wp}$ is simple.

Denote the ring of integer of $K_{f,\wp}$ by $\mathcal{O}_{f,\wp}$.

Proposition

There exists a $G_{\mathbb{Q}}$ -stable $\mathcal{O}_{f,\wp}$ -lattice $\Lambda \subset V_{\wp}(A_f)$ such that

$$\rho_{f,\wp,\Lambda} \sim \begin{pmatrix} 1 & * \\ 0 & \chi^{k-1} \end{pmatrix}, \rho_{f,\wp,\Lambda} \nsim \begin{pmatrix} 1 & 0 \\ 0 & \chi^{k-1} \end{pmatrix}$$

To sum up, $\rho_{f,\wp,\Lambda}$ has the properties that

- It's unramified at every prime $l \neq p$.
- It's NOT semi-simple.

We omit the proof that $\rho|_D$ is semi-simple.

- Kenneth A. Ribet. A modular construction of unramified p-extensions of $Q(\mu_p)$
- Fred Diamond, Jerry Shurman. A First Course in Modular Forms
- Chandan Singh Dalawat. Ribet's modular construction of unramified p-extensions of $Q(\mu_p)$

Thank You!